Thursday, August 25, 2016
Zoonosis - Disease Threats from Horses to Humans
The other day I noticed one of my horses with a snotty eye - you know, the thick white mucus type discharge. He hadn't been around strange horses for the past two weeks, so I got to thinking maybe I passed something onto him that I got from another horse. In any event, a couple of days of treating his eyes with Vetericyn Ophthalmic Gel and my horse's eye cleared right up. But the whole thing got me thinking about horse to human and human to horse transmitted diseases.
Diseases passed from animals to humans are called Zoonosis. Zoonosis may be bacterial, viral, or parasitic (from parasites). There are more than three dozen we can catch directly through touch and more than four dozen that result from bites.
In a tragic event from earlier this year, an elderly woman in Seattle died from an infection that she appears to have contracted from a horse she rode, according to a new report. The 71-year-old woman had visited her daughter, who operates a horse boarding and riding center in King County, Washington, the report said. During the week of Feb. 21, 2016, one of the horses developed nasal and eye discharge, suggesting the animal had an infection. The daughter treated the horse with antibiotics, and the animal recovered.
But that same week, the daughter developed a mild sore throat and cough, and her mother also showed symptoms of an upper respiratory infection. Both the mother and daughter had been in close contact with the horse, with the mother petting and riding the horse on at least two days, Feb. 25 and 29.
A few weeks later, on March 2, the mother experienced vomiting and diarrhea, and was later found unconscious. She was taken to the hospital, but died on March 3, the report said.
Officials collected a nasal swab from the previously sick horse, along with a swab of the daughter's throat and samples of the mother's blood. All three samples tested positive for the same strain of bacteria, called Streptococcus equi subspecies zooepidemicus (or S. zooepidemicus for short.) This type of bacteria is known to infect animals, including horses, pigs and cats.
It's rare that people get sick from S. zooepidemicus, the report said. When infections in people do occur, they can cause a variety of symptoms, including chills, weakness, difficulty breathing, fever, kidney inflammation and arthritis.
People can become infected with S. zooepidemicus by consuming unpasteurized dairy products. But the daughter said that she and her mother hadn't consumed any unpasteurized dairy products, nor did they have contact with other animals, except one healthy cat. "The evidence from this investigation linked a fatal S. zooepidemicus infection to close contact with an ill horse," the report said.
The mother may have been at increased risk for infection because of her age. It also remains unclear if the woman's respiratory symptoms preceded or followed her infection with S. zooepidemicus. (It's possible that the respiratory symptoms were from a separate infection, which in turn could have made the woman more vulnerable to S. zooepidemicus, the report said.)
The researchers recommend that people thoroughly wash their hands after contact with horses or other animals. More research is needed to better understand factors that put people at risk for catching S. zooepidemicus from animals, as well as the different symptoms people who get infected can experience, the report said.
The original article was published by Live Science. Some common Zoonotic Diseases transmittable from Horses to Humans:
Rabies. Although the incidence of rabies in both horses (45 to 50 cases annually in the United States) and humans is low, it is highly fatal, and difficult to diagnose. Rabies is transmitted from horses to people via saliva, and any small cut or abrasion can serve as an entry point. Veterinarians often include at least an examination of the oral mucosa as part of a diagnostic work-up and can easily become infected. Unusual clinical signs, especially if associated with any degree of neurologic abnormality, should be a warning for potential rabies risk, and appropriate precautions should always be taken.
Brucellosis. Brucellosis, normally associated with Cattle, occasionally occurs in horses. The bacteria usually localizes in muscles, tendons and joints, though it is most commonly seen in cases of infected withers in horses. Drainage from areas infected are very infectious.
Anthrax and glanders. Anthrax can infect virtually all animal species and can cause local carbuncles and pustules in humans from direct lesion contact along with pneumonia from inhalation of the infectious agent. Higher incidences of anthrax occur in Arkansas, South Dakota, Louisiana, Missouri and California, and sudden equine death in these areas should especially place this disease high on the differential list.
Glanders. Occurs in horses, donkeys and mules, and it also has cutaneous and pulmonary forms that are usually fatal to both horses and humans. Use of a mask is commonly overlooked by practitioners examining horses presenting with a cough and an elevated temperature but could be the difference between making a diagnosis and needing one yourself.
Leptospirosis. Leptospirosis is considered to be the most widespread zoonosis in the world and is caused by highly invasive bacteria transmitted between species by infected body fluids (commonly urine) as well as contaminated water and soil, and it can enter the body through even minor skin lesions. The disease in humans can range from mild to severe and can result in death.
Lyme disease. Once thought to be exclusively caused by Borrelia burgdorferi, it is now postulated that other strains of bacteria as well as many species of ticks may harbor and transmit Lyme disease or other similar variations of this condition. Lyme disease in horses can manifest as a generalized body stiffness or soreness; reluctance to move, vague, transitory lameness; or transitory joint swelling. Infected horses have also exhibited nervous system disorders including blindness, head pressing, circling and seizures.
br> Ixodes species ticks carry these bacteria and are commonly found on deer but will also feed on other species such as dogs, humans and horses, which is where the zoonotic potential, as vectors, exists. Lyme disease symptoms in humans vary dramatically among patients, so it can be difficult to diagnose. A slowly expanding skin rash after a tick bite is the classic sign for Lyme disease and is seen in 60 to 80 percent of human cases, but many cases are more subtle and include abnormalities of the musculoskeletal, nervous and cardiovascular systems including arthritis-like symptoms, irregular heartbeat, and central nervous system or spinal cord issues. Lyme disease.
br> Lyme disease has not been considered especially relevant in the southern United States, but a recent variation of this condition, southern tick-associated rash illness (STARI), has been attracting attention. It is attributed to infection with an as-yet-uncultured spirochete tentatively referred to as Borrelia lonestari. The Lonestar tick has been implicated as the principal vector.
br> Diagnostic testing for Lyme disease, or any other new variants, is currently difficult because blood tests do not differentiate between exposure and infection. Substantial research is ongoing in this area, and newer, more helpful diagnostics for both horses and people should be forthcoming.
br> EGE and HGE. Two tick-associated diseases that mimic Lyme disease are equine granulocytic ehrlichiosis (EGE) and human granulocytic ehrlichiosis (HGE), both of which are caused by Ehrlichia equi. EGE causes elevated temperature, depression, jaundice, limb swelling, ataxia and blood abnormalities. HGE produces flu-like symptoms in people including fever, headache, chills and nausea. Both infections can, if not recognized and treated with antibiotics, become systemic and result in death. Blood tests can identify E. equi in white blood cells and should be used whenever clinical signs in horses and people, along with any type of tick bite or tick exposure history, make clinicians suspect these diseases.
br> Equine encephalomyelitis, Mosquito-borne diseases pose a zoonotic threat for veterinarians, though the horse, in these cases, acts as a reservoir or vector. Eastern, Western, St. Louis and some subtypes of Venezuelan equine encephalomyelitis can affect humans. Clinical signs in people vary from mild flu-like symptoms to severe central nervous system signs. Human deaths occur primarily in children and the elderly. Postmortem examination of infected horses puts veterinarians at risk of direct disease transmission through infected blood and cerebrospinal fluid, so always take appropriate protective measures.
br> Fecal-oral transmission. Diarrhea commonly occurs in horses, and many diseases in this category can be transmitted to humans via the fecal-oral route. Good hygiene control measures are crucial when veterinarians are working on cases involving diarrhea in horses. Also keep in mind that any human, or other horse, that is receiving antibiotics (especially orally) is at increased risk for developing an enteric infection from a horse with diarrhea.
br> Salmonellosis is a common form of enteric infection in both horses and humans. Stress-induced diarrhea (transport, training, competition, hospitalization) is common, and Salmonella species are often reported after fecal culture in these cases. Fecal-oral transmission is the prominent route of zoonotic spread.
br> Horses also shed Giardia species in their feces and, though it is unclear if Giardia intestinalis is a pathogenic organism in horses, it is parasitic in humans.
br> Crytoporidium parvum is another protozoal organism with the potential of horse-to-human spread. Research has shown higher levels of C. parvum in foals, so exercise caution when handling young horses with diarrhea — wear gloves, change clothes after handling affected individuals, wash hands and use foot baths when entering and leaving affected areas.
br> These hygiene principles also apply in cases of dermatologic diseases of zoonotic potential in horses. Ringworm can be easily transmitted to people through direct contact. Always keep in mind that many equine skin lesions may be potential sources of disease transfer.
br> Hendra virus. Hendra virus is a paramyxovirus first isolated in 1994 from an outbreak of respiratory and neurologic disease in horses and humans in Hendra, a suburb of Brisbane, Australia. This virus is thought to be carried by bats of the genus Pteropus. Horses become infected through contact with bats and their droppings or secretions.
br> Hendra virus infection in horses produces an initial respiratory infection and can progress to neurologic signs and total systemic failure. These clinical signs are mirrored in human Hendra infection. The three cases reported in humans to date include two veterinarians and a trainer, two of which died. Humans caring for infected horses are exposed to body fluids and excretions and can easily become infected. Severe flu-like symptoms quickly develop. The globalization of the equine market makes disease transmission across continents, including the Hendra virus, a more serious threat.
br> MRSA. Infection with methicillin-resistant Staphylococcus aureus (MRSA) can be transmitted from horses to humans and vice versa. This bacterium can be found in skin wounds and various locations in the respiratory tract. Many studies indicate that MRSA is becoming increasingly prominent, especially in veterinarians, farm workers and others who have increased contact with animals.
br> In a study at the University of Utrecht in the Netherlands from 2006 to 2008, 43 percent of all horses that entered the hospital clinic, for whatever reason, cultured positive for MRSA at some point during their hospital stay. Over 9 percent of horses were carriers based on positive cultures done when they first arrived at the clinic, and 15 percent of hospital employees who handled equine patients were also identified as MRSA carriers, though less than 1 percent of the general population of the Netherlands is MRSA-positive. Clearly horses and those who work around them are at higher risk of cross-transmitting this potentially serious infection.
br> Disease list from DVM360 Magazine
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment